# Nuclear Anapole Moments and Their Constraints on the PNC Nuclear Interaction

SPIN 2002 Symposium @ BNL Sep. 11, 2002

Cheng-Pang Liu
TRIUMF

- What is the anapole moment?
- The PNC nuclear interaction and nuclear AMs
- Experimental and theoretical works
- Summary

- What is the anapole moment?
- **■** From classical EM:

$$\Phi(\vec{x}) = \int d^3 x' \frac{\rho(\vec{x}')}{4\pi |\vec{x} - \vec{x}'|}$$

$$= \int d^3 x' \rho(\vec{x}') \left\{ 1 - \vec{x}' \cdot \vec{\nabla} + \frac{1}{2} \left( \vec{x}' \cdot \vec{\nabla} \right)^2 + \cdots \right\} \frac{1}{4\pi |\vec{x}|}$$

$$\rightarrow \text{ net charge, charge dipole, charge quadrupole } \oplus \text{ charge radius,}$$

$$\overrightarrow{A}(\overrightarrow{x}) = \int d^3 x' \frac{\overrightarrow{j}(\overrightarrow{x}')}{4\pi |\overrightarrow{x} - \overrightarrow{x}'|}$$

$$= \int d^3 x' \overrightarrow{j}(\overrightarrow{x}') \left\{ 1 - \overrightarrow{x}' \cdot \overrightarrow{\nabla} + \frac{1}{2} \left( \overrightarrow{x}' \cdot \overrightarrow{\nabla} \right)^2 + \cdots \right\} \frac{1}{4\pi |\overrightarrow{x}|}$$

$$\rightarrow \text{ no net current, magnetic dipole, magnetic quadrupole } \oplus$$

anapole, ...

**■** Anapole Moment:

$$\vec{a} = -\frac{1}{4} \int d^3 x' \ \vec{x}'^2 \vec{j}(\vec{x}')$$

$$\vec{A}(\vec{x}) = \vec{a} \, \delta^3(\vec{x})$$

- $\rightarrow \vec{a}$  is odd (even) for a vector (axial-vector) current
- $\rightarrow \vec{A}(\vec{x})$  is of contact form

■ Multipole Classification:

|       | $C_J$ | $E_J$ | $M_J$ |
|-------|-------|-------|-------|
| J = 0 | PT    |       |       |
| J=1   |       |       | PT    |
| J=2   | PT    | P     |       |
| J=3   |       |       | PT    |
|       | •     |       |       |

- $\rightarrow C_0$ : charge monopole
- $\rightarrow C_1$ : charge dipole
- $\rightarrow M_1$ : magnetic dipole
- $\rightarrow E_1$ : anapole

#### **■** Definition:

- → The EM vector multipole which is P-odd but T-even
- → By multipole expansion:

$$a_{\lambda} = \frac{-i\sqrt{6\pi}}{\vec{q}^2} T_{1\lambda}^{\text{el}}$$

 $\rightarrow$  A dimensionless constant  $\kappa$  is often used:

$$\vec{a} = \frac{G_F}{\sqrt{2}} \kappa \vec{I} \text{ (nuclear spin)}$$

# Look at the current windings

#### a Cicalar



 $\vec{j}(\vec{x})$ : toroidal

 $\vec{B}(\vec{x})$ : poloidal (extensive)

 $\vec{\mu} \neq 0$ 

 $\vec{a} = 0$ 

#### **■** Toroidal



 $\vec{j}(\vec{x})$ : poloidal

 $\vec{B}(\vec{x})$ : toroidal (confined)

 $\overrightarrow{\mu} = 0$ 

 $\vec{a} \neq 0$ 



#### • The PNC nuclear interaction and nuclear AMs

PNC nuclear interaction is important to understand both the hadronic neutral weak interaction and dynamics of strong interaction

- Long-range PNC N-N interaction from the light meson exchange scheme
- → Direct  $W^{\pm}$  and  $Z^{0}$  exchanges is suppressed by the hard core ( $\lesssim$  0.5 fm)
- → The physics of how weak bosons exchange between quarks at short distances is treated phenomenologically by a set of meson-nucleon PV couplings
- $\rightarrow$  Conventional framework is OBEP with  $\pi^{\pm}$ ,  $\rho$ , and  $\omega$  as mediators, the six PNC meson-nucleon coupling constants are constrained by experiments while DDH best values provide the theoretical benchmark

| Couplings        | Equivalent                     | Best ( $\times 10^{-7}$ ) | Range ( $\times 10^{-7}$ )  |
|------------------|--------------------------------|---------------------------|-----------------------------|
| $f_{\pi}$        | $\sqrt{32} F_{\pi}/g_{\pi NN}$ | 4.56                      | 0 ~ 11.4                    |
| $h_{ ho}^{0}$    | $-2F_0/g_{ ho NN}$             | -11.4                     | <b>-30.78</b> ~ <b>11.4</b> |
| $h_{ ho}^{1}$    | $-2F_1/g_{ ho NN}$             | -0.19                     | -0.38 ~ 0                   |
| $h_{ ho}^2$      | $-2F_2/g_{ ho { m NN}}$        | -9.5                      | $-11.02 \sim -7.6$          |
| $h_{\omega}^{0}$ | $-2G_0/g_{\omega \rm NN}$      | -1.9                      | -10.26 ~ 5.7                |
| $h^1_\omega$     | $-2G_1/g_{\omega NN}$          | -1.14                     | -1.9 ~ -0.76                |

- PNC electromagnetic couplings induced by  $H_{\text{PNC}}^{(2)}$
- → 1-body contribution (nucleonic AM)



→ 2-body contribution (PNC exchange currents)



→ Polarization mixing (E1 excitations)



#### Experimental and theoretical works

- Atomic PNC experiments
- → Asymmetry in highly forbidden M1 transitions

e.g. 
$$6S_{1/2} \longleftrightarrow 7S_{1/2}$$
 in <sup>133</sup>Cs

→ Optical rotation in allowed M1 transitions

e.g. 
$$6P_{1/2} \longleftrightarrow 6P_{3/2}$$
 in  $^{203,205}$ Tl

**■** Contributing processes

## (1) $Z^0$ exchange

 $\rightarrow$  NSI part ( $\propto Q_W$ ) dominates, NSD part suppressed by  $1 \rightarrow 1 \sin^2 \theta_W$ 



### (2) NSD radiative corrections of $O(G_F \alpha)$

 $\rightarrow$  AM gives the dominant NSD effect for heavy nuclei ( $\sim A^{2/3}$ )



1 Huperline Correction > 1 Anapale Interaction

Extraction of anapole contribution

$$H_{\mathrm{PNC}}^{\mathrm{NSD}}(e - \mathrm{nucleus}) = \frac{G_F}{2} \kappa_{\mathrm{tot}} \, \vec{\alpha} \cdot \vec{l} \, \rho(\vec{r})$$
  
 $\kappa_{\mathrm{tot}} = \kappa_Z + \kappa_{\mathrm{hf}} + \kappa_{\mathrm{anapole}}$ 

→ Careful experiments, and good atomic many-body calculations, get:

$$\kappa_{\text{tot}}(^{133}\text{Cs}) = 0.112 \pm 0.016 \text{ (1997, Colorado)}$$
 $\kappa_{\text{tot}}(^{205}\text{Tl}) = 0.293 \pm 0.400 \text{ (1995, Seattle)}$ 
 $\kappa_{\text{tot}}(^{205}\text{Tl}) = -0.08 \pm 0.40 \text{ (1995, Oxford)}$ 

→ Subtraction of Z exchange and hyperfine correction, get:

$$\kappa_{\rm anapole}(^{133}{\rm Cs}) = 0.090 \pm 0.016$$
 (7 $\sigma$  determination)  
 $\kappa_{\rm anapole}(^{205}{\rm Tl}) = 0.376 \pm 0.400$  (consistent with 0)

- Ongoing works and proposals on atomic PNC
- → Cs (Paris)
- → Tl (Seattle): sign and value?
- → Dy, Yb (Berkeley): odd neutron
- → Fr (Stony Brook, TRIUMF): isotope effect
- $\rightarrow$  NSI effect measures  $Q_W$ , NSD effect shows nuclear AM!

**■** Theoretical calculations of nuclear AMs

$$\langle \Psi \mid T_1^{\text{el}} \mid \Psi \rangle = \langle \Psi_0 \mid T_1^{\text{el}(A)} \mid \Psi_0 \rangle$$

$$+\sum_{\Phi_0} \left( \frac{\langle \Psi_0 | T_1^{\mathrm{el}(V)} | \Phi_0 \rangle \langle \Phi_0 | H_{\mathrm{PNC}}^{(2)} | \Psi_0 \rangle}{E_{\Psi_0} - E_{\Phi_0}} + H.c. \right)$$

where all states are many-body states

- → Subtleties:
- 1. The form of  $H_{PNC}$ : 2-body or 1-bodyanalog
- 2. Current conservation: should include PNC meson exchange currents arising from  $H_{\rm PNC}^{(2)}$ , and note that some of them might not be constrained by the gauge principle
- 3. Good description of nuclear structure: one of the fundamental problem in nuclear many-body physics
- Selected results of  $\kappa_{\text{anapole}}$  using DDH best values

A: s.p. approximation

B: s.p. 

Woods-Saxon, oscillator, full currents ...etc.

C: RPA with constant density approximation

D: RPA beyond const. density

E: SM with closure approximation

|                   | $oldsymbol{A}$ | В              | C     | D     | E     |
|-------------------|----------------|----------------|-------|-------|-------|
| <sup>133</sup> Cs | 0.09           | (0.08, 0.07)   | 0.05  | 0.04  | 0.05  |
| <sup>205</sup> Tl | -0.36          | (-0.32, -0.30) | -0.28 | -0.18 | -0.08 |

## ■ Detailed breakdown of various contributions to AM

| Nucleus                               | Source   | $f_{\pi}$ | $h_{ ho}^0$ | $h_{ ho}^{1}$ | $h_{ ho}^2$ | $h_{\omega}^{0}$ | $h^1_\omega$ |
|---------------------------------------|----------|-----------|-------------|---------------|-------------|------------------|--------------|
| 133Cs                                 | 1 – body | 0.59      | 0.87        | 0.90          | 0.36        | 0.28             | 0.29         |
|                                       | 2 – body | 8.58      | 0.02        | 0.11          | 0.06        | -0.57            | -0.57        |
|                                       | mixing   | 51.57     | -16.67      | -4.88         | -0.06       | -9.79            | -4.59        |
|                                       | total    | 60.74     | -15.78      | -3.87         | 0.36        | -10.09           | -4.87        |
| <sup>205</sup> Tl                     | 1 – body | -0.63     | -0.86       | -0.96         | -0.35       | -0.29            | -0.29        |
| · · · · · · · · · · · · · · · · · · · | 2 – body | -3.54     | -0.01       | -0.06         | -0.03       | 0.28             | 0.28         |
|                                       | mixing   | -13.68    | 4.63        | 1.34          | 0.08        | 2.77             | 1.27         |
| •                                     | total    | -18.03    | 3.76        | 0.33          | -0.30       | 2.76             | 1.26         |

## **■** Constraints on PNC meson-nucleon couplings

| Observable                                               | $Exp.(\times 10^{-7})$ | $f_{\pi} - 0.12 h_{\rho}^{1}$ | $h_{\rho}^{0}$ + 0.7 $h_{\omega}^{0}$ | $\Delta h_{ ho}^{1}$ | $h^2_{ ho}$ | $\Delta h_{\omega}^{0}$ | $\Delta h_{\omega}^{1}$ |
|----------------------------------------------------------|------------------------|-------------------------------|---------------------------------------|----------------------|-------------|-------------------------|-------------------------|
|                                                          |                        | $-0.18\mathrm{h}_\omega^1$    |                                       | -                    |             |                         |                         |
| A <sup>pp</sup> <sub>Z</sub> (13.6 MeV)                  | $-0.93 \pm 0.21$       |                               | 0.043                                 | 0.043                | 0.017       | 0.009                   | 0.039                   |
| A <mark>pp</mark> (45 MeV)                               | $-1.57 \pm 0.23$       |                               | 0.079                                 | 0.079                | 0.032       | 0.018                   | 0.073                   |
| AZP (221 MeV)                                            | 0.84 ± 0.29            |                               | -0.030                                | -0.030               | -0.012      | 0.021                   |                         |
| ${ m A}_{ m Z}^{ m plpha}$ (46 MeV)                      | $-3.34 \pm 0.93$       | -0.340                        | 0.140                                 | 0.006                |             | -0.039                  | -0.002                  |
| $P_{\gamma}$ (18F, 1081 keV)                             | 1200 ± 3860            | 4385                          |                                       | 34                   |             |                         | -44                     |
| A <sub>γ</sub> ( <sup>19</sup> F, 110 keV)               | $-740 \pm 190$         | -94.2                         | 34.1                                  | -1.1                 |             | -4.5                    | -0.1                    |
| $\langle    a (Cs)    \rangle M_N^2 / e$                 | 800 ± 140              | 60.7                          | -15.8                                 | 3.4                  | 0.4         | 1.0                     | 6.1                     |
| $\langle \parallel a  (Tl) \parallel \rangle  M_N^2 / e$ | 370 ± 390              | -18.0                         | 3.8                                   | -1.8                 | -0.3        | 0.1                     | -2.0                    |



#### Summary

- → Nuclear anapole moments are a sign of nuclear parity nonconservation and capable of putting good constraints on the PNC nuclear interaction. This means they provide a way to study the hadronic weak interaction and dynamics of strong interaction.
- → The theory-vs.-experiment discrepancy is one puzzle needed to be sorted out. More experiments alike are valuable, and better atomic and nuclear calculations are the challenge for theorists.